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Abstract. We apply an optimized method to the adjoint generation ahatevolving land ice model
through algorithmic differentiation (AD). The optimizati involves a special treatment of the fixed-
point iteration required to solve the nonlinear stressrmawhich differs from a straightforward
application of AD software, and leads to smaller memory ieguients and in some cases shorter
computation times of the adjoint. The optimization is doreimplementation of the algorithm of
Christianson [1994] for reverse accumulation of fixed-pgiroblems, with the AD tool OpenAD.
For test problems, the optimized adjoint is shown to havddiaer memory requirements, poten-
tially enabling larger problem sizes on memory-limited imaes. In the case of the land ice model,
implementation of the algorithm allows further optimizatiby having the adjoint model solve a
sequence of linear systems with identical (as opposed tonggrmatrices, greatly improving per-
formance. The methods introduced here will be of value teéfforts applying AD tools to ice
models, particularly ones which solve a “hybrid” shallow icshallow shelf approximation to the
Stokes equations.

1 Introduction

In recent decades it has become clear how little we understhaut the processes governing ice
sheet behaviorMaughan and Arthern2007), and the complexity that is required in numerical ice
sheet models in order to understand this behavidgtl€ et al., 2007;Lipscomb et al.2009). The
representation of poorly-understood processes in ica shadels leads to large, poorly-constrained
parameter sets, the size of which might potentially scaté tie size of the numerical grid. It is
vital that there be a means to relate the outputs of an icd siegel back to these parameters, both
comprehensively and efficiently. However, the simplesthoeétof sensitivity assessment — running
the model multiple times while varying each parameter itaison — quickly becomes intractable
because of the complexity of the models. Consider, for it&taa dynamic model of the Antarctic
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Ice Sheet, which takes several days to run on a supercorgpultister, and contains several hundred
thousand parameters pertaining to the spatially varyimtidnal and geothermal properties of the
bed over which it slides. Assessing the sensitivity of theletdo this parameter field by the method
described above would not be feasible.

Adjoint modelgprovide a means to assess these sensitivities in a way whiotépendent of the
number of parameters. The adjoint of an ice sheet model smebusly calculates the derivatives of
a single model output (often callectast functiof with respect to all model parameters — or rather,
thegradientof the cost function with respect to the parameter setpaotrol variables Note that the

latter computation more naturally lends itself to scieaiifiquiry, as

— this single output can be one of societal interest, for msgahe contribution of an ice sheet

to sea level over a given time window; and

— an investigator is unlikely to solely be interested in juse®f these (potentially) several
hundred thousand poorly-constrained parameters.

The adjoint model is essentially the linearization of thedelponly the information is propagated
backward in time (or rather in reverse to computational Qrdes such, the original model is often
referred to as théorward model Essentially, it is this backward-in-time propagationttaows for
simultaneous calculation of these derivatives, regasdishe dimension of the parameter set.

One of the earliest instances of the use of the adjoint of arsieet flow model was that of
MacAyeal(1992), in which a control method was developed to optiméiilg model to observed
velocities through adjustment of bed friction paramet&re ice flow model used in this study was
a depth-integrated approximation to the shear-thinnindeit equations, appropriate to ice shelves
and weak-bedded streanidcAyea) 1989). Moreover, it was a “static” model, i.e. it consistedy
of the nonlinear stress balance governing ice velocitied ,did not evolve the ice geometry or tem-
perature. The method has since been used in a number of@ppiE (e.g.MacAyeal et al. 1995;
Rommelaerel997;Vieli and Payne2003;Larour et al, 2005;Khazendar et a 2007;Sergienko et a).
2008; Joughin et al. 2009). Similar methods have been applied to “higher-drepproximations
(Pattyn et al, 2008), or to the Stokes equations themselves (darlighem et al, 2010;Goldberg and Sergienko
2011;Petra et al, 2012;Perego et al.2014;Isaac et al, 2015).

More recently, algorithmic differentiation (AD) tools henbeen applied to ice sheet models for
adjoint model generation. AD tools differentiate modeldifferentiating elemental operations and
applying the chain rule. They have been applied extensteedgmospheric and ocean codEgsr{co,
1997;Heimbach et a].2002;Heimbach 2008). The use of AD offers ease of differentiation of the
model. For instance, the majority of the adjoint models nosed in the previous paragraph ignore
the dependence of nonlinear ice viscosity on strain ratesiyzing an “approximate” set of adjoint
equations which have the same form as the forward modelyialipfor code reuse. At the same time,
this “approximate” adjoint ignores terms in the model geadiwithout knowing whether they are



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-11, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 3 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

60

65

70

75

80

85

90

95

negligible. While the “full” adjoint model involves equatie distinct from the forward model, the use
of AD avoids having to write the code to solve them. Anotheraadage is modularity. Modifying,
for example, the specific form of strain-rate dependenceswosity in an ice sheet model would
then require invasive changes to an analytically-derivetd$ adjoint equations. When generating
the adjoint through AD, these changes are automatic. Funitre, AD tools are invaluable when
dealing with time-dependent or multiphysics models, wimeoelel complexity makes it very difficult
to generate adjoint code “by hand”. In fact, to date the oinfetdependent ice sheet adjoint models
have been generated through the use of MBifnbach and Bugniqr2009;McGovern et al.2013;
Goldberg and Heimbagl2013;Larour et al, 2014).

For clarity we will draw a distinction between the partiaffeliential equations (PDEs) that com-
prise a mathematical model of a physical system, and the gtatipnal model that discretizes these
equations. The PDEs represent an operator, the lineatizatiwhich has an adjoint (theontinuous
adjoint), which can be discretizégloldberg and Sergienk@011). Alternatively, the computational
model can be differentiated directly. We focus on ttiiscreteadjoint in this paper. As mentioned
above, a discrete adjoint model can be thought of as thesew®der computation of the original
model Griewank and Walthef2008); Heimbach and Bugnio(2009), but an important subtlety is
that this discrete adjoint may not necessarily corresporie correct continuous adjoint, a subtlety
which bears on the accuracy of ice sheet adjoint models.

Most ice flow models solve a nonlinear elliptic system of differential equations (PDEs) for
ice velocity, and these equations require an iterative fp@idt approach. (Here “most ice flow mod-
els” is taken to meaall ice flow models, except those which make the Shallow Ice Agpration
(SIA, Hutter (1983)). The SIA strictly applies only to slow-moving ic@fen at its base, and not the
fast-flowing ice streams at the Antarctic and Greenland mamtyich currently exhibit variability.)
We refer to this fixed-point iteration as the Forward FixethPleration FFPI). Ice sheet models of
this type, to which AD tools have been applied previousin@y step backward through the FFPI
(Goldberg and Heimbagh013; Larour et al, 2014; Martin and Monnier 2014). This strategy is
sometimes referred to as threechanical adjoin{Griewank and Walther2008). The mechanical ad-
joint of a fixed-point solution is in fact the iterative sdbut of a distinct fixed-point problem, whose
convergence differs from that of the forward lodphfistianson 1994), and to which we refer as the
Adjoint Fixed Point IterationAFPI). As such the mechanical adjoint could potentially perféom
many iterations, thereby wasting resources; or too fewati@ns, resulting in decreased accuracy. In
fact, in some cases the mechanical adjoint can be inacawgdedless, as we show in Section 4.1.
Additionally, the mechanical adjoint can lead to burdensenemory and/or recomputation loads as
discussed in Section ®lartin and Monnier(2014) show accuracy can be maintained by truncating
the iteration in the mechanical adjoint, but do not provid®laust, situation-independent way of

doing so.
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Christianson(1994) provides a mathematical strategy for finding theiatigf a fixed-point prob-
lem via direct solution of a related fixed-point problem. Toavergence of this related problem can
be directly evaluated, avoiding the problem of too many av few iterations. A novelty of the
approach is that only information from the converged statihe forward loop is used for the ad-
joint computation, permitting additional efficiency gaifs this paper we present an application
of the AD software OpenADUtke et al, 2008) to the MITgcm time-dependent glacial flow model
(Goldberg and Heimbagt2013). A different AD tool has previously been applied tis fhe model,
so here we focus on the implementation of the Christiansgorihm (henceforth calleBC94) —

an innovation which is observed to yield substantial improents in performance.

2 Fixed-point problem

The forward model to which AD methods are applied is thaGofdberg(2011), which is a “hy-
brid” of two low-order approximations to the nonlinear Stsklow equations that govern ice creep
over timescales longer than a dagréve and Blatter2009). These are the Shallow Ice Approxi-
mation, appropriate for slow-flowing ice governed by vetishear deformation, and the Shallow
Shelf Approximation (SSAMorland (1987); MacAyeal(1989)), appropriate for fast-flowing ice
governed by horizontal stretching and shear deformatiba.hybrid equations have been shown ap-
propriate in both regimes, and represent considerable gtatipnal savings over the Blatter-Pattyn
equations Blatter, 1995; Pattyn 2003;Greve and Blatter2009), as they require the solution of a
two-dimensional system of elliptic PDEs rather than a tidieeensional one.

We do not discuss the details of the model here, as they aea givdetail inGoldberg(2011)
and inGoldberg and Heimbact2013). Rather, we focus on its FFPI. Conceptually, the rhable
gorithm can be divided into two components: prognostic €tidependent) and diagnostic (time-
independent). In the MITgem land ice model, the prognosiimgonent comprises an update to ice
vertical thickness ) through a depth-integrated continuity equation, as welha update of the
surface elevation and, implicitly, the portion of the modemain where ice is floating in the ocean
rather than in contact with its bed. The diagnostic compbietves the FFPI for ice velocities
based on the current thickness profile. Mathematicallystép can be understood as the inversion

of a nonlinear operatafF:
F(u,a)=f. 1)

Herew is a vector representing horizontal depth-averaged w&sai andv. F' is the discretiza-
tion of a nonlinear elliptic PDE in depth-averaged velaciyrepresents the set of material pa-
rameters that determine the coefficients of the PDE: icektigiss {{), basal friction rheologi-
cal parameters({), and ice rheological parameterd)( f is the discretization of driving stress
(Cuffey and Patersqr2010), or the depth-integrated hydrostatic pressureigmadwhich is deter-

mined by ice thickness). In this model (and in many others)tbnlinear elliptic equation is solved
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by a sequence of solutions of linear elliptic operators, netiee operators depend on the result of

the previous linear solve:
u(m+1) = (L{u(m)va})il.f = q)(u(m)va')v (2)

where, in the definition ob, a represents the augmentation of thesét include f. L is a linear
operator constructed using,,,y, the current iterate of;, and the paramete. Note thata will
differ for each time step through the dependence on icetless, which is updated by the prognostic
component of the model. In general, the ice rheologicalmpatears depend on ice temperature, which
is advected and diffused over time. Our ice model does nat hathermomechanical component,
but once developed, it will not affect the algorithm we prese this paper.

Eq. (2) is our FFPI mentioned previously. In practice theaitien is truncated when subsequent
iterates agree in some predefined sense, but in theory wifszge to a unique solutiam, (a). In the
process of computing the adjoint to the ice moé’g}i must be found, either directly or indirectly.
The focus of this paper is an efficient, scalable method ofprdmg this object.

3 Forward model and “mechanical adjoint”

Here we give a brief overview of how the model and its mectalradljoint are constructed. For
further details the reader should cons@ldberg and Heimbacf2013). Table 1 contains a high-
level pseudocode version of the ice model time steppinggola@. Superscripts denote time step
indices. First the velocity solveeALC_DRI VI NG_STRESS and the following loop) finds ice veloc-
ities based on current ice thickness and material paramehen the prognostic component updates
thickness ADVECT_THI CKNESS). The function® comprises the construction of the linear sys-
tem L (including the nonlinear dependence of the matrix coefiitsi®@n the previous iterate) and its
solution.

Table 2 gives an overview of our implementation of the meaw®radjoint. Here we introduce
some notation: for a given computational varialile the adjoint to X, which formally belongs to
the dual tangent space at, is denotedv* X (e.g.Heimbach and Bugniqr2009). The algorithm
evolves the adjoint variables (e.g*,H) backward in time. These adjoint variables carry with them
the sensitivities of the model output to the correspondarg/érd variables, and the sensitivities are
eventually propagated back to the input parameters. Natetth adjoints of the individual (pseudo-)
subroutines are given and correspond to the (pseudo-) tiee of the forward model, mirroring
the way the adjoint is actually constructed. Just like thevéwd model, the adjoint contains an inner
loop — this is a specific implementation of the AFPI, whichlwé discussed in further detail below.
As the computation ofp involves the solution of a linear system of equations, theiatof ¢
involves the solution of the adjoint of that system. Sinerifatrix L{u.,),a} is self-adjoint, it is

easier to calculate this result analytically than for an ADIto differentiate the linear solver code
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— allowing invocation of external “black box” libraries theannot be differentiated by the tool. This
strategy is used by other applications of AD to ice models.(Martin and Monnier 2014).

An important point to be made is that the inner loop in Table 2xecuted as many times as
the corresponding inner loop in the forward models¢m!™), without any checks of convergence.
This could lead to under- or over- convergence, as statedgugly. Another important aspect is
that at each reverse time step, and, importantly, at eacttide of the FFPI, the state of the forward
model is required. In particular, every matiiXu ,,),a} must be stored (or recomputed), along with
other intermediate variables within the fixed-point loopeTstorage and recovery steps are shown
explicitly in tables 1 and 2 — and can lead to burdensome mginads depending on the number
of fixed-point iterations taken at each time step.

The mechanical adjoint of our model was first generated ushig (Transformation of Algo-
rithms in Fortran;Giering et al. (2005)), but has subsequently been generated via OpenAD wit
little further difficulty.

4 Fixed point treatment

Christianson(1994) presents an algorithm (BC94) for calculating theudjof a fixed-point prob-

lem that addresses the shortcomings given above, nametieffendence of the termination of the
adjoint loop on that of the forward loop, and the requirenterstore variables at each iteration of
the adjoint loop. Additionally it provides the opportunfty further optimization when applied to a

higher-order ice sheet model, as discussed below.
4.1 Mathematical basis

For a rigorous mathematical analysis of BC94 the user iscagkeonsult the original paper. Here
we give a brief overview of its mathematical basis. In terhE@. (2), consider the converged state

of the fixed point problem:
. = &(u.,a). 3)

Consider a total differential of this equation:

0P . oD JRU
U, = %(u*,a)éu* + 8—d(u*,a)5a. 4

Rearranging gives

- —1
Su, = [I - g—ﬂ gz Sa. (5)
If the Euclidean operator norm of the square matii/0w is less than unity then the above is
equivalent to
Su, = (1 0B /0u + (90 /u)> + (0D )0u)® + ) gi;m. 6)
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Note that in the above serie3®/du is always evaluated at the converged solution The above
condition on the norm 0@ /0w will not hold in general — but since this is one of the conditio
required for convergence to a fixed point, we can expect thatlibe satisfied ats..

From eq. (6) we obtain the desiradjoint operator, approximated by a truncated series of length

n.

o () [ G (E)) o (G ) o

The algorithm ofChristianson(1994) uses a fixed-point loop in order to calculate (7), thever-

gence criterion of which determines the truncation lengtfihis loop represents an implementation
of the AFPI, distinct from the one implemented by the mectanadjoint. In order to make this

distinction explicit, the operator in eq. (7) can be written

20 G ®

=0 k=n+1-—1

where it is understood that in the= 0 term the product sequence evaluates to the identity. It is

straightforward to check that the mechanical adjoint (dfl&2) effectively computes the operator

n a@(ﬂfﬂ T n aq)(k) T
> (%) I (%0) ®

=0 k=n+1—1

whered® ;) /0u and similar terms indicate that the gradient is calculatgidgithe variables that
have been stored at forward iteratibnrather than at the converged solution. It is apparent that t
expression can differ from eq. (7) if some iterates are famfthe fixed point, or if the gradient df

is sensitive tau. In fact, it has been observed in certain cases that a podarechbinitial iterate can
lead to inaccurate adjoint calculation. Furthermore, enrtlechanical adjoint, the truncation length
depends on the number of forward iterations, which may notlsed to the convergence of this
series. A scheme which truncates this series based on thefsike truncated terms will be more
robust.

4.2 Implementation in OpenAD

Tables 3 and 4 give an overview of our implementation of Ba®the MITgcm ice model using
OpenAD. High-level changes to the code were necessaryhbugubroutines that comprise the ac-
tion of the operato® were left unchanged. As shown in 3, rather than calfindirectly, the loop
implementing the FFPI calls a subroutine calfd STACGE with an argumenphase which has
valuesPRELCOP, | NLOOP, or POSTLOOP. Just before the fixed-point lodpHI STACE is called
with PRELOOP, which does nothing (that is, nothing in forward mode). \Witthe loop,PHI STAGE

is called with argumertNL OOP, which essentially has the same effect as the cdlitothe original
ice model time stepping algorithm. After the loop is coneardg®Hl STAGE is called with argument
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POSTLOOP, which calls® one more time (which, if the iteration is converged, showdstehnegli-
gible effect). Of key importance is that any storing of vhtés that takes place within the call 4o
in thel NLOOP phase isindoneat the end of each iteration, unless convergence is reabhether
words, exactly one “iteration’s worth” of storage occursidg the time step.

The reason for the addition of this layBHI STAGE is rooted in the nature of OpenAD source
transformation. To implement BC94 using this tool, it wasrfd to be simplest to replace OpenAD-
transformed code with handwritten code, which can be dotteeatubroutine level usingmplates
files. Such a template was written fBHI STAGE in order to implement the pseudocode in tables
3 and 4. The subroutine thus serves as a “layer” which doesffett the diagnostic ice physics
represented by the functid@mor the prognostic physics implemented outside of the FF&.Idhus
the modularity offered by the AD approach is not lost.

Table 4 shows how the adjoint model is constructed, makimgaiithe OpenAD-generated ad-
joint code for®. In adjoint mode, the calls tBHI STAGE happen in reverse order. The variable
w is a placeholder with no real role in the forward computatibat the adjoint of the call to
PHI STAGE in the POSTLOOP phase assigns " w the adjoint values of velocity resulting from
AD_ADVECT_THI CKNESS. In the INLOOP phasé*w is updated according to the equation:

. . oe\" .
S0y =00 (G ) 07 (10)

wherem indicates the AFPI iteration step. (In the table, the stipsordices are left off for clarity.)
This loop iteratively constructs the truncated infiniteisgin eq. 7 (or rather, its action driw,).
Finally, the adjoint-mode call tBHI STAGE with PRELOOP represents the operation ()‘(?)%)T on
the result.

The introduction of the variable represents the bulk of the modifications that were necessary
implement the algorithm using OpenAD. The only additionaldification is a handwritten evalua-
tion of convergence of*w: we terminate when the relative reduction in tuggnorm of the change
in 0*w is below a fixed tolerance. We emphasize that all of these finations are at the level of
the “wrapper’PHI STAGE, which does not contain any representation of model phyaits hence
changes to model physics would not impact this subroutimétsbandwritten adjoint code).

4.3 Optimization of linear solve

As mentioned previously, evaluatirginvolves the solution of a large (self-adjoint) linear gyat
and thus the adjoint o involves the solution of a linear system with the same maassuming
the same values af anda). In the mechanical adjoint model, within a given time stbs matrix
differs with each iteration of the adjoint loop; however,B&94, only the right hand side differs.
This invariance suggests the use of a linear solver whosecaosbe amortized over a number of
solves, such as an L-U decomposition or an algebraic migdtigreconditioner, the internal data
structures of which only need be constructed once. In thidystve consider only an L-U solver.
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5 Test Experiment

A simple experimental setup was developed to test the acguparformance, and convergence
properties of the implementation of BC94. The setup cosisisan advancing ice stream and shelf in
a rectangular domaitx,y) € [0,80km] x [0,40km]. We prescribe an idealized bedrock topography
R and initial thicknessiy. R does not vary in the along-flowt () direction and forms a channel
through which the ice flows, prescribed by

R(z,y) = —600 — 300 x sin (4(?13111) : (11)

while initial thickness is given by

300 m 4 min <17 (%&’ﬂi‘“y) x1000m 0 <z <50 km

ho(z,y) = (12)

300 m 50 km < 2 <70 km.
Wherez > 70 km, there is open ocean (until the ice shelf front advancssthis point). Where ice
is grounded, a linear sliding governs basal stress:

7y =—Cu (13)

whereC = 25 Pa (a'm). The Glen’s Law coefficient (which controls the ice stiffis) is given by
8.5x 10718 Pa 3 a1, corresponding to ice with a uniform temperature.e84°C. At the upstream
boundary, ice flows into the domain:at= 0 at a constant volume flux per meter width of &5.0°
m?/a. Aty = 0 andy = 40 km no-flow conditions are applied. Velocity, thickneasd grounding line
are plotted in Fig. 1(a). Further details of the equatioesgiren inGoldberg and Heimbac{2013).

In the experiment, a cost functiohis defined by running the model forward in time for 8 years,
and evaluating the summed square velocity at the end of theThat is,

J =Y u(i,j)? +u(i.j)? (14)
0,J

wherei andj indicate cell indices in the— andy—directions, respectively, andandv are cell-
centered surface velocities. Unless specified otherwise sitep is 0.2 years and grid resolution is
2000 m, so K i <40 and 1< j < 20. The control variable consists of basal melt ratedefined for
each cell and considered constant over a cell and in timerfandero only where ice is floating),
and set uniformly to zero in the forward run, even under frapice. Fig. 1(b) plots the adjoint
sensitivities ofm, or alternativelyd.J/dm;;, wherem;; is melt rate in cell(z, j). The field shows
broad-scale patterns that are physically sensible: in thsgims of the ice shelf toward its front,
thinning through basal melting will weaken the restrictisece on the shelf arising from tangential
stresses at the no-slip boundaries. The driving force for Boproportional to ice shelf thickness,
and so in the center of the shelf thinning leads to deceteraMeanwhile, ice shelf velocities are

very insensitive to melting at the center of the ice shelfifro
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We find that the results of the mechanical adjoint and of theisidmodel implementing BC94
(which we henceforth refer to as the “fixed-point adjointf® @lmost identical, with a relative dif-
ference no larger than 16 over the domain (not shown). However, the adjoint seniisishould
also be compared against a “direct” computation of the gradi.e. one which does not involve the
adjoint model. In this cas@J/dm;; is approximated through finite differencing, by perturbing
by a finite amount and running the forward model again. Thicutation is carried out for each cell
(4,7). Fig. 1(c) plotsdisceq, given by

§*miP — 5*med
discgg=—2 Y 15
fd 5*m§]d 5 ( )

whereé*mgf is a centered-difference approximation:

*, __cd 1
d'mis = Z(J(mij +e)—J(mi; —e€)), (16)
andJ(m;; + €) indicates that the meltratt cell (¢,5) only is perturbed by. € is set to 0.01 m/a
uniformly.

disceq is seen to become quite large, on the orderd% in some parts of the domain, warranting

further examination. An implicit assumption in the disaapy measureliscy is that the finite
difference approximation has negligible error, which may Ine the case. We can estimate where
this finite-difference error will be large: from a Taylor g expansion, and ignoring round-off error
(which we do not attempt to estimate), the error in approximgethe adjoint sensitivity ofn;; by
finite difference is roughly proportional to the second ative 92.7/0(m;;)%. As a proxy for this
guantity we plot in Fig. 1(d) the 2nd-order differencejof

AQJU = J(m” + E) + J(mij - E) -2J (17)

Aside from the left-hand boundary, this measure appearstelate well withdiscgg. Thus we
can at least partly attribute the pattern of discrepancyign Hc) to errors in the finite difference
approximation. We emphasize that (17) is not an accuratsueaf the second derivative — which
is obviously not achievable through finite differencing ifiorder derivatives are inaccurate — but
is simply meant to give an indication of its magnitude.

5.1 Truncation errors

The analysis o€hristianson(1994) suggests the error of the calculated adjoint deplémeisly on
both thereverse truncation erroand theforward truncation error The reverse truncation error is the
difference between the final and penultimate iterates imtlj@int loop, i.e. the error associated with
terminating the loop after a finite number of iterations. fTisareferring to Table 4, ifn iterations
are carried out, the reverse truncation error is equal to

al|wy, — w1, (18)

10
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whereq is related to the gradient @f at the fixed point. The norm here is thep-norm, because
this is the norm on which our convergence criterion is based.

While a tight bound for will vary with each time step, it can be expected that thensvé&unca-
tion error will vary linearly with the convergence toleraremd we do not address it further. However,
we investigate the dependence on forward truncation esréollbws. A sequence of adjoint model
runs is carried out with increasingly smaller tolerancedtie forward fixed-point iteration loop. The
tolerance of the reverse loop is kept at a small value {L0The adjoint sensitivities corresponding
to the smallest forward tolerance)("°) are assumed to be “truth”; error is estimated by comparison
with these values. Fig. 2 plots the maximum error in the adjoélculation over the domain against
the forward tolerance, which is a good measure of the fortvarttation error. Within a range of for-
ward truncation error the dependence is nearly linearpatih this dependence appears to become
weaker as forward truncation error becomes smaller.

5.2 Performance

Here we evaluate the relative performance of the mechaanchfixed-point adjoint models in terms
of both timing and memory use. The results are presented e T& but we must first briefly
discuss how the OpenAD-generated adjoint computes setisgtifor a time-dependent model. As
mentioned in the introduction, adjoint computation takke in reverse. This presents an issue,
because at each time step in this reverse computational, iredadjoint model requires knowledge
of the full model state at the corresponding forward modektistep. In general, keeping the en-
tire trajectory (including intermediate variables) of mé-dependent model run in memory is not
tractable. Therefore efficient adjoint computation is aahaé between recomputation (beginning
from intermediate points in the run known as “checkpointstyprage of checkpoint information on
disk, and keeping variables in memory (in data structurbedétapes”). The “store” and “restore”
commands in tables 1-4 refer to tape manipulation. For éuritiformation on adjoint computation
seeGriewank and Walthe(2000) andGriewank and Walthe¢2008).

In our implementation this amounts to an initial forward mith no taping (aside from the final
time step), but writing of checkpoints to disk. This initiain is referred to below as the “forward
sweep”. Afterwards the “reverse sweep” begins, beginniity the final time step. The reverse
sweep consists of an intial adjoint computation for the ftimakstep. As reverse computation pro-
ceeds, the model is restarted from checkpoints to recoviablas used in adjoint computation. The
details of this process are important because they deterhmmw many extra forward time steps
(without taping) must be taken. These plain time steps séhegomputation of a subsequent time
step in “tape mode”, i.e. they write intermediate variatitesape during computation. This is fol-
lowed immediately by a time step computation in “adjoint mbdn the model runs we consider,
no extra plain checkpoints are required. A run of 40 time stégen, will consist of nearly 40 time

steps in “plain mode” (no taping, but with checkpoint wrin40 time steps in tape mode, and 40
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time steps in adjoint mode. Even if adjoint time steps andingito disk and to tape are negligible,
such a run will still take about twice as long as the forwardieio

In Table 5 we compare run times for the forward and reverseepséor the mechanical and
fixed-point adjoints of our test problem, at multiple gridotutions. We also give run times for the
“untouched” model, i.e. code which has not been transforbye@penAD. The difference between
this time and the forward sweep represents writing checkpdd disk, taping in the final time step,
and any other extra steps or changes (e.g. modified varigi#ds) caused by the transformation.

We also show the maximum length of the double tape in memdrgrd are different tapes for
different variable types: integer, double, logical andrelster. The double tape is observed to require
the most memory in our tests. However, due to storage of lodipés, the integer tape is nonnegligi-
ble, requiring between 20% (in the largest test) to 50% (@nstimallest test) of the memory required
by the double tape. The numbers reported represent an upped bas our system of reporting tape
lengths has a granularity of ¥§1024¥ elements.

In all cases, the forward and adjoint fixed-point tolerarfuegholds are set to 18. As reso-
lution increases, stability considerations require sendiime steps, so the number of time steps
doubles when cell dimensions are halved. The simulatiomsuar on Intel Xeon 2.67GHz cpus and
the number of cores used is displayed. Unless otherwisefigne¢he Conjugate Gradient solver
from the PETSc library (http://www.mcs.anl.gov/petscyiwiL-U preconditioner is used to invert
all matrices. The results show that without further optiatian, the BC94 algorithm does not offer
large timing performance gain over the mechanical adjdihe forward sweep is slightly shorter,
but the reverse sweep is roughly the same. However, the nyeloal is far less, only going up
to (at most) 136 MB in the high resolution run where the me@aradjoint uses 2.76 GB. This
provides a possible explanation for the forward sweep oftkehanical adjoint being slower: it is
overhead associated with the additional memory allocaf\sreven at the highest resolution this is
stilla modestly-sized problem, it is likely that certairiiges of the model on certain machines would
quickly reach memory limits and either crash or beginningmng memory, significantly affecting
performance.

Substantial timing performance gains are not seen untiLthleoptimization described in Sec-
tion 4.3. As discussed, this optimization is made possil¢he BC94 algorithm. At the highest
resolution tested, the reverse sweep takes 40% less tidavanall the model run is 30% shorter.
The performance gain is due to the fact that in a time stepditteet L-U decomposition is only
done once, and subsequent linear solves are by forward- asldsubstitution, which are far less
expensive operations. As indirect solvers such as Corgugeddients are typically faster than direct
matrix solvers, it is unclear what relative performancengabuld be at even higher resolutions; but
in the three resolutions tested, relative performance owgs with resolution.

We mention that the BC94 algorithm has recently been impteetkin the AD tool Tapenade,

through a different user interface that relies on direstieserted in the code rather than on the
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OpenAD templating mechanism. It has not been tested on dtoigenodel but on two other CFD
codes, without our linear solver optimisation part. Thedrfprmance results are in line with ours,

with a minor run-time benefit but a major reduction of memarpsumption Taftaf et al, 2015).

6 Realistic Experiment

In addition to idealized experiments, the fixed-point adfjdias been tested in a more realistic
setting. Smith Glacier in West Antarctica is a fast-flowicg stream that terminates in a floating
ice shelf. In recent years, high thinning rates of Smith hasen observedShepherd et al.2002;
McMillan et al,, 2014), and this is thought to be related to, or even causgthioying of the ad-
jacent ice shelves by submarine melti®hépherd et al2004). Here we examine this mechanism
using the fixed-point adjoint. To initialize the time-depent model, we choose a domain and a rep-
resentation of the bedrock elevation and ice thicknessamegion from BEDMAP2 Eretwell et al,
2013) and constrain the hidden parameters of the modellvas@nal coefficient field and depth-
averaged ice temperature) according to observed velosiigunethods that have become standard
in glaciological data assimilation (e.dQughin et al. 2009;Favier et al, 2014). The observed ve-
locities come from a dataset of satellite-derived velooitgr all of Antarctica Rignot et al, 2011).

Using the bed and thickness data, and the inferred slidicigtemmperature fields, the model is
stepped forward for 5 years with 0.2 year time steps. Thelaition is run on 24 cpus. As with our
test experiment, submarine melt rate is used as the corrialble. The cost function, rather than
being a measure of velocity, is the lossvalume Above FloatatioiVAF) in the domain at the end
of the 5 years. VAF is essentially the volume of ice that caxddtribute to sea level change, and is
often used to assess the effects of ice shelf thinning onngiediiceDupont and Alley(2005). It is
given by

VAF = "HAF(i)AzAy, (19)
+
i) = h(i) + L2 R(i
HAF(z)-(h( )+ ; R( )> , (20)

wherei is cell index,h is thicknessp and andb,,, are respectively ice and ocean densitys bedrock
elevation, and the “+” superscript indicates the positia€t pf the number. We use= 918 kg/m?
andp,, = 1028 kg/m?. A key aspect is that any floating ice does not contribute t&VA

The results are shown for the ice shelves connecting to S@igicier in Fig. 3, overlain on
grounded ice velocities (adjoint melt rate sensitivities zero where ice is grounded). It is inter-
esting to note where the sensitivities are largest, aloagrargins of the ice shelves and also along
the boundary between the two main sections of the ice shie#.fiechanism is similar to that of

our test experiment: the margins are where shear stressritedxand thinning here will lessen the
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backforce on grounded ice. The boundary between the twiossaf the ice shelf likely plays a
similar role in the ice shelf force balance, as velocity slieéarge in this area (not shown).

Regarding accuracy, the finite-difference approximatthée gradient cannot be found for every
ice shelf cell. However, we compared the adjoint sensjtigtthe finite difference approximation at
4 arbitrary locations, and relative discrepancy was on tderoof 10-°. In terms of performance,
this is a much larger setting than even the highest resoli@mined in the test problem. The
500 m cell size leads to approximately 200,000 ice-coverdid m the domain (which means the
matrices involved, which incorporate both- andy— velocities, have 400,000 rows and columns).
The forward sweep has a run time of 1700 seconds and the eesseep 2340 seconds. (Multiple
runs on the same cluster give similar timing results.) Ohé/ftxed-point adjoint with an L-U solver
for the adjoint loop is considered. The timing results areoemaging, indicating that the reverse
sweep timing comes closer the forward sweep timing withdesgale simulations.

7 Discussion and conclusions

The fixed-point algorithm o€Christianson(1994) has been successfully applied to the adjoint cal-
culation of a land ice model. The algorithm is very relevantite model code, as the bulk of the
model’s computational cost is the solution of a nonlineéiptt equation through fixed-point iter-
ation. As many land ice models solve a similar fixed-pointopem — particularly those intended
to simulate fast-flowing outlet glaciers in Antarctica anceénland — the methodology introduced
here has potential for the application of algorithmic diffetiation techniques to other ice models.
The implementation of the algorithm replaces a small portd AD-generated code by handwrit-
ten code. However, this is done such that it does not ineeriéth the modularity offered by AD
approach, and it does not require revision as model phykasge.

The algorithm offers two advantages over the more straoghtdrd “mechanical adjoint,” i.e. the
application of AD without intervention. First, the code w8 the true adjoint to the fixed point it-
eration, rather than an approximatianf(Eq. 9). This avoids inaccurate results arising from “bad”
initial guesses, and ensures proper convergence of thegoiad adjoint. Second, the memory re-
quirements do not increase with the number of adjoint ii@natas they do with the mechanical
adjoint. In the case of OpenAD, the effect on timing perfong&is small; but for machines with
limited memory or for larger problems, the large memory laadociated with the mechanical ad-
joint will be a serious issue.

In the context of our ice model, the nature of the algorithtoved for further optimization, as
it replaces the sequential solve of linear systems withediffy matrices to a sequence of solves
with the same matrix. Replacing the Conjugate Gradientesa¥ the forward model with a direct
L-U solver in the adjoint model leads to further performamprovement. The ratio of the reverse

sweep to forward sweep, which is roughly the ratio of the mmes of adjoint and forward models,
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decreases from 2.6 for the smallest problem consideredtfmdthe largest. In the case where only
a single time step is taken (not discussed above), no chetkmre necessary, and the duration of
the reverse sweep can be as little as 0.3 times the forwarefswe

It should be pointed out that some authors have implementethodel adjoint generation with-
out any iteration within the adjoint model. Depending on #pproximation to the Stokes mo-
mentum balance used, the adjoint stress balance can bedlelirectly from the equations in-
volved (Perego et al. 2014;lsaac et al, 2015). The result is a linear elliptic equation that can be
solved without iteration, but which leads to a linear systéat is far less sparse than in the for-
ward model. Additionally, the equations must potentially te-derived if the model physics are
changed. Moreover, not all such approximations to the Stbkéance allow such an approach. “Hy-
brid” stress balances, which solve two-dimensional apprakons to the Stokes balance and are
appropriate for both fast-sliding and slow creeping flove arcreasing in popularity due to low
computational cost but reasonable agreement with the Birdér approximation [e.gGoldberg
(2011); Schoof and Hindmars{2010); Cornford et al.(2013); Arthern et al.(2015); W. Lipscomb,
pers. comr Our ice model implements such a hybrid stress balancder@iftiating such a bal-
ance at the equation level is possible but very tedious, eads| to very complicated expressions
that depend strongly on discretizatidBdldberg and Sergienk@011), both undesirable properties.
Thus we argue that our application of the Christianson fpeuit algorithm in our algorithmically
differentiated ice model framework represents a contidiouto land ice modeling in general.

8 Code availability

All code necessary to carry out the experiments is publigbilable through the MITgcm, Ope-
nAD and PETSc websites. Please see the supplement to thefpagetailed instructions regarding
installation and running of experiments.

9 Acknowledgements

This work was made possible in part through a SAGES (Sco#tlsance for Geoscience, Envi-
ronment and Society) travel grant for early career exchalg®RC grant NE/M003590/1, and by a
grant from the U.S. Department of Energy, Office of Scienoégn contract DE-AC02-06CH11357.
Additionally the authors are grateful for valuable inpwirfr B. Smith, J. Brown and P. Heimbach.

15



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-11, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 3 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

495

500

505

510

515

520

525

530

References

Arthern, R. J., R. C. A. Hindmarsh, and C. R. Williams, Flow speed witteratfitarctic ice sheet and its controls
inferred from satellite observationdpurnal of Geophysical Research: Earth Surfat2((7), 11711188,
doi:10.1002/2014JF003239, 2014JF003239, 2015.

Blatter, H., Velocity and stress fields in grounded glaciers: a simple algofith including deviatoric stress
gradientsJournal of Glaciology41, 333-344, 1995.

Christianson, B., Reverse accumulation and attractive fixed p@msmization Methods and Softwai@4),
311-326, doi:10.1080/10556789408805572, 1994.

Cornford, S. L., D. F. Martin, D. T. Graves, D. F. Ranken, A. M.B®cq, R. M. Gladstone, A. J. Payne, E. G.
Ng, and W. H. Lipscomb, Adaptive mesh, finite volume modeling of maiieesheets). Comput. Phys.
232(1), 529-549, doi:10.1016/}.jcp.2012.08.037, 2013.

Cuffey, K., and W. S. B. Patersomhe Physics of Glaciergth ed., Butterworth Heinemann, Oxford, 2010.

Dupont, T. K., and R. Alley, Assessment of the importance of ice-shetfessing to ice-sheet flogeophys.
Res. Lett.32, L04,503, 2005.

Errico, R. M., What is an adjoint modelBAMS 78, 2577—2591, 1997.

Favier, L., G. Durand, S. L. Cornford, G. H. Gudmundsson, Ogl@edini, F. Gillet-Chaulet, T. Zwinger,
A. Payne, and A. M. L. Brocq, Retreat of Pine Island Glacier contraigdnarine ice-sheet instability,
Nature Climate Changel, 117-121, doi:10.1038/nclimate2094, 2014.

Fretwell, P., et al., Bedmap2: improved ice bed, surface and thisldatasets for antarcticBhe Cryosphere
7(1), 375-393, doi:10.5194/tc-7-375-2013, 2013.

Giering, R., T. Kaminski, and T. Slawig, Generating efficient derieaticode with taf adjoint
and tangent linear euler flow around an airfoifuture Gener. Comput. Syst21(8), 1345-1355,
doi:10.1016/j.future.2004.11.003, 2005.

Goldberg, D. N., A variationally-derived, depth-integrated approfionato a higher-order glaciologial flow
model,Journal of Glaciology57, 157-170, 2011.

Goldberg, D. N., and P. Heimbach, Parameter and state estimation with-dejpeadent adjoint marine ice
sheet modelThe Cryospherer(6), 1659—-1678, doi:10.5194/tc-7-1659-2013, 2013.

Goldberg, D. N., and O. V. Sergienko, Data assimilation using a hybriflaee model, The Cryosphereb,
315-327, doi:10.5194/tc-5-315-2011, 2011.

Greve, R., and H. BlatteBynamics of Ice Sheets and Glaciegpringer, Dordrecht, 2009.

Griewank, A., and A. Walther, Algorithm 799: Revolve: An implementatiohn cbeckpointing for the
reverse or adjoint mode of computational differentiatigkCM Trans. Math. Softw.26(1), 19-45,
doi:10.1145/347837.347846, 2000.

Griewank, A., and A. WaltheiEvaluating Derivatives. Principles and Techniques of Algorithmic Differentia
tion, Vol. 19 of Frontiers in Applied Mathematicand ed., SIAM, Philadelphia, 2008.

Heimbach, P., The mitgcm/ecco adjoint modeling infrastruct@tdYAR Exchanged3(1), 1317, 2008.

Heimbach, P., and V. Bugnion, Greenland ice-sheet volume sensttiviigsal, surface and initial conditions
derived from an adjoint modefnnals of Glaciol. 50, 67-80, 2009.

16



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-11, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 3 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

535

540

545

550

555

560

565

570

Heimbach, P., C. Hill, and R. Giering, Automatic generation of efficiefgiaticode for a parallel navier-stokes
solver, in"Computational Science ICCS 2002, Vol. 2331, part 3 of Lecture Ne@smputer Sciencedited
by J. J. Dongarra, P. M. A. Sloot, and C. J. K. Tan, pp. 1019-18@8nger-Verlag, 2002.

Hutter, K., Theoretical GlaciologyDordrecht, Kluwer Academic Publishers, 1983.

Isaac, T., N. Petra, G. Stadler, and O. Ghattas, Scalable and effigigatithms for the propaga-
tion of uncertainty from data through inference to prediction for largdesqroblems, with ap-
plication to flow of the antarctic ice sheefournal of Computational Physic296, 348 — 368,
doi:http://dx.doi.org/10.1016/j.jcp.2015.04.047, 2015.

Joughin, 1., S. Tulaczyk, J. L. Bamber, D. Blankenship, J. W. HaltS@ambos, and D. G. Vaughan, Basal
conditions for Pine Island and Thwaites Glaciers, West Antarctica, detedusing satellite and airborne
data,Journal of Glaciology55, 245—-257, 2009.

Khazendar, A., E. Rignot, and E. Larour, Larsen B ice shelf rhgofsgceding its disintegration inferred by a
control methodGeophys. Res. LetB4, L19503, doi:10.1029/2007GL030980, 2007.

Larour, E., E. Rignot, I. Joughin, and D. Aubry, Rheology of the Rornce Shelf, Antarctica, inferred
from satellite radar interferometry data using an inverse control methedphys. Res. LetB2, L05,503,
doi:10.1029/2004GL021693, 2005.

Larour, E., J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morligh. Rignot, N. Schlegel, and A. Khazen-
dar, Inferred basal friction and surface mass balance of the rsttgeeenland ice stream using data assim-
ilation of icesat (ice cloud and land elevation satellite) surface altimetry and(ise sheet system model),
The Cryosphere3(6), 2335-2351, doi:10.5194/tc-8-2335-2014, 2014.

Lipscomb, W., R. Bindschadler, E. Bueler, D. M. Holland, J. Johpsmd S. Price, A community ice sheet
model for sea level predictioOS Trans. AGU90, doi:10.1029/2009EO030004, 2009.

Little, C. M., et al., Toward a new generation of ice sheet mod&BS Trans. AGU88, 578-579, 2007.

MacAyeal, D. R., Large-scale ice flow over a viscous basal sediriéebry and application to Ice Stream B,
Antarctica,Journal of Geophysical Research-Solid Earth and Plarf#ts4071-4087, 1989.

MacAyeal, D. R., The basal stress distribution of Ice Stream E, Antarétiterred by control method3ournal
of Geophysical Research7, 595-603, 1992.

MacAyeal, D. R., R. A. Bindschadler, and T. A. Scambos, Basaidnof ice stream e, west antarctidaurnal
of Glaciology 41, 247-262, 1995.

Martin, N., and J. Monnier, Adjoint accuracy for the full stokes ice fimodel: limits to the transmission of
basal friction variability to the surfac&he Cryosphere3(2), 721-741, doi:10.5194/tc-8-721-2014, 2014.

McGovern, J., |. Rutt, J. Utke, and T. Murray, Adism v.1.0: an adjofra thermomechanical ice-sheet model
obtained using an algorithmic differentiation to@goscientific Model Development Discussiod&),
5251-5288, doi:10.5194/gmdd-6-5251-2013, 2013.

McMillan, M., A. Shepherd, A. Sundal, K. Briggs, A. Muir, A. Ridout, Aogg, and D. Wingham, In-
creased ice losses from antarctica detected by cryosae@physical Research Lettedd(11), 3899-3905,
doi:10.1002/2014GL060111, 2014GL060111, 2014.

Morland, L. W., Unconfined ice-shelf flow, iDynamics of the West Antarctic Ice Shesstited by C. J. V. der
Veen and J. Oerlemans, pp. 99-116, Reidel Publ Co, 1987.

17



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-11, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 3 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

575

580

585

590

595

600

605

Morlighem, M., E. Rignot, G. Seroussi, E. Larour, H. Ben Dhia, anéibry, Spatial patterns of basal drag in-
ferred using control methods from a full-stokes and simpler modeBife Island Glacier, West Antarctica,
Geophys. Res. LetB7, L14,502, doi:10.1029/2010GL043853, 2010.

Pattyn, F., A new three-dimensional higher-order thermomechaiteaheet model: basic sensitivity, ice-
stream development and ice flow across subglacial lakesnal of Geophysical Research-Solid Earth and
Planets 108 doi:10.1029/2002JB002329, 2003.

Pattyn, F., et al., Benchmark experiments for higher-order anctokes ice sheet models (ISMIP HOMhe
Cryosphere, Volume 2, Issue 2, 2008, pp.95;P085-108, 2008.

Perego, M., S. Price, and G. Stadler, Optimal initial conditions for cogptia sheet models to earth system
models,Journal of Geophysical Research: Earth Surfat#9), 1894-1917, doi:10.1002/2014JF003181,
2014.

Petra, N., H. Zhu, G. Stadler, T. J. Hughes, and O. Ghattas, An ingaassnewton method for inversion of
basal sliding and rheology parameters in a nonlinear stokes ice sheel, duurnal of Glaciology58(211),
889-903, doi:doi:10.3189/2012J0G11J182, 2012.

Rignot, E., J. Mouginot, and B. Scheuchl, Ice flow of the antarctic icetsBeience3336048), 1427-1430,
doi:10.1126/science.1208336, 2011.

Rommelaere, V., Large-scale rheology of the Ross Ice Shelf, Aitarcomputed by a control methathurnal
of Glaciology 24, 694-712, 1997.

Schoof, C., and R. C. A. Hindmarsh, Thin-film flows with wall slip: An emytotic analysis of higher order
glacier flow modelsQuart. J. Mech. Appl. Math63, 73—-114, 2010.

Sergienko, O. V., R. A. Bindschadler, P. L. Vornberger, and DMBcAyeal, Ice stream basal conditions from
block-wise surface data inversion and simple regression models ofréasflow: Application to Bind-
schadler Ice Streandpurnal of Geophysical Researctil3 F04,010, doi:10.1029/2008JF001004, 2008.

Shepherd, A., D. J. Wingham, and J. Mansley, Inland thinning of thedsen Sea sector, West Antarctica,
Geophys. Res. LetR9, L1364, d0i:10.1029/2001GL014183, 2002.

Shepherd, A., D. J. Wingham, and E. Rignot, Warm ocean is erodirgd Mrearctic Ice SheetGeophys. Res.
Lett, 31, L23,402, 2004.

Taftaf, A., L. Hascoét, and V. Pascual, Implementation and measumtsrof an efficient Fixed Point Adjoint,
in EUROGEN 2015ECCOMAS, GLASGOW, UK, 2015.

Utke, J., U. Naumann, M. Fagan, N. Tallent, M. Strout, P. HeimbacHi(,. D. Ozyurt, and C. Wunsch,
OpenAD/F: A modular open source tool for automatic differentiation afréa codesACM Transactions
on Mathematical Softwar@4, 2008.

Vaughan, D. G., and R. Arthern, Why is it hard to predict the future ®eficeets%Science3155818), 1503—
1504, doi:10.1126/science.1141111, 2007.

Vieli, A., and A. J. Payne, Application of controlmethods for modelling tlwevfbf pine island glacier,west
antarcticaAnnals of Glaciol. 36, 197—204, 2003.

18



Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-11, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 3 February 2016

(© Author(s) 2016. CC-BY 3.0 License.

Table 1.Pseudocode version of forward model time-stepping procedure.

FOR n = initial TimeStep TO final Ti meSt ep
/I Constructsi from H!™ :

CALL CALC DRI VI NG _STRESS( H[™)

m = 0
REPEAT UNTI L CONVERGENCE COF u
u = ®(u,a)

m = m+l

store L, uw and other vari abl es
lastmd™ = m
/I Finds H™ 11 from continuity equation with:
CALL ADVECT_THI CKNESS()

Table 2. Pseudocode version of mechanical adjoint.

FOR n = final TimeStep DOMNTO initial Ti meStep
Il Constructsy* H™ and§*w!™ from §* H"*1
I via the adjoint of the continuity equation :
CALL AD_ADVECT_TH CKNESS()
REPEAT lastmi” TI MES
restore L, uw and other variabl es
§a = 6*a+5u(3e)"
0w = é*u(g—i)T
Il Updatess* H!™ from é*a :
CALL AD_CALC DRI VI NG_STRESS( §* HI")
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Table 3. Pseudocode version of modified forward model for BC94.

20

FOR n = initial TineStep TO final Ti neSt ep

/I Constructsa from H™ :

CALL CALC DRI VI NG STRESS( H[™)

uw = initial guess

CALL PHI STAGE(PRELOCP, w, u, &)

REPEAT UNTI L CONVERGENCE CF u
CALL PHI STAGE(|I NLOOP, w, wu, a)

CALL PHI STAGE(POSTLOCP, w, u, &)

/I Finds H™*1 from continuity equation withe:
CALL ADVECT THI CKNESS()

SUBROUTI NE PHI STAGE(phase, w, u, @)

I F (phase==PRELCOP)
[/l do nothing

ELSE | F (phase==I NLOOP)
save tape pointer
u = ®(u,a)
/I Makes sure no storage is done :
restore tape pointer
ELSE | F ( phase==POSTLOOP)
u = ®(u,a)

store L, w and other vari abl es
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Table 4. Pseudocode version of fixed-point (BC94) adjoint.

FOR n = final TimeStep DOMNTO i niti al Ti meSt ep

Il Constructss* H™ and 6*u from §* H+1)
/I via the adjoint of the continuity equation :
CALL AD_ADVECT_THI CKNESS()

CALL AD PHI STAGE( PCSTLOOP, &*w, 6*u, 6%a)
REPEAT UNTI L CONVERGENCE OF §*w

CALL AD PHI STAGE(I NLOOP, &*w, 6*u, 6%a)
CALL AD PHI STAGE(PRELOOP, 6w, &*u, 6%a)
u = 0.0
/I Updatess* H™ from 6*a
CALL AD_CALC DRI VI NG_STRESS( 5* H[")

SUBROUTI NE AD_PHI STAGE( phase, &*w, 8w, §*a)

| F (phase==POSTLOOP)
Sfw = 'u

ELSE | F (phase==I NLOOP)
save tape pointer
restore L, uw and other variables
fw = §w (%)T—O—é*u
/I Makes sure converged state is reused :
restore tape pointer

ELSE | F ( phase==PRELOOP)

5a = 5w (22)"
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Figure 1. (a) Surface speed (shading) in the test experiment. The flow directfoonisright to left, and the
white portion of the figure is where the ice shelf has not advanced to thefehé domain. Black contours
give thickness spaced every 200 m and the white contour is the grouimngb) Adjoint sensitivities of ice
speed to basal melt rates. (c) (log) relative discrepancy betweeintgBasitivities and the gradient calculated

via finite differencing. (d) 2nd order differencing of cost functién
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Figure 2. Maximum error in fixed-point adjoint calculation versus tolerance ofvérd loop. The red line
indicates linear dependence.

Table 5. Timing performance and memory usage of mechanical and fixed-adjaints. “dbl tape” indicates
the length of the double tape.

. BC94 algorithm
grid size plain mechanical adjoint BC94 algorithm with L-U
(untouched) L
optimization
40x20 total ‘ 9.4s | total 389s total 37.2s | total 30.4s
forward | 12.2's forward | 11.7s | forward | 11.7 s
(40 timesteps, reverse | 259s reverse | 25.1s | reverse | 18.3s
1 cpu) dbl tape | 264MB | dbltape | 8MB dbl tape | 8MB
80x40 total | 110 total 434s | total 4255 | total 321s
forward | 134 s forward | 125s forward | 126s
(80 timesteps, reverse | 300s reverse | 300s reverse | 195s
1 cpu) dbltape | 1.38GB | dbltape | 136MB | dbltape | 136MB
160x80 total | 882 total 3276s | total 3204s | total 2306's
forward | 971s forward | 886s forward | 886 s
(160 timesteps, reverse | 2297s | reverse | 2304s | reverse | 1417s
4 cpus) dbl tape | 2.76GB | dbltape | 136MB | dbltape | 136MB
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Figure 3. Adjoint sensitivity of loss of Volume above Floatation (VAF) to basal meltinger the ice shelves
adjacent to Smith Glacier (location shown in inset). Filled contours give laddee velocity where ice is
grounded; red-white shading gives adjoint melt rate sensitivity unéeshielves. The thick black contour de-
notes the boundary of the ice shelves.

The submitted manuscript has been created by UChicago Argonne, LLC, Operatgooin@ National Laboratory (“Argonne”). Argonne| a
U.S. Department of Energy Office of Science laboratory, is operated under Contrd2EN®C02-06CH11357. The U.S. Government retdins
for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevoeatsldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and displdjigly, by or on behalf of the Government.

24



